Telegram Group & Telegram Channel
📈 Холивар: NumPy против pandas против PySpark — кто рулит в данных

Дата-сайентисты, делитесь: чем копаете свои миллионы строк?

🐍 NumPy — минимализм и математика
• Основа всех ML-библиотек.
• Векторы, матрицы, broadcasting — строго, быстро, эффективно.
• Если ты знаешь np.dot и np.linalg, тебя зовут в глубины ML.

Но:
• Строгая типизация и отсутствие удобных табличек.
• Хотел сделать фильтр по колонке? Сначала reshape.
IndexError: too many indices — старая знакомая.

📊 pandas — король табличек
df.head() — и ты уже видишь суть.
• Гибкость, группировки, фильтрации — словно Excel на стероидах.
• Подходит и для EDA, и для препроцессинга.

Но:
• Большой датасет? Привет, out of memory.
• Интуитивно, но не всегда предсказуемо.
SettingWithCopyWarning — и ты не уверен, изменил ли что-то вообще.

🔥 PySpark — big data и кластеры
• Когда данных слишком много для pandas.
• Распределённые вычисления, lazy evaluation, Spark SQL.
• Подходит для продакшена, когда ноутбук уже плачет.

Но:
• Стартуем JVM… подождите немного.
• Написал три строчки — получил лог на 300 строк.
• Не для быстрых экспериментов.

А вы кто: numpy-ниндзя, pandas-мастер или spark-инженер? Или по чуть-чуть от каждого?
Инструкция о том, как оставить комментарий: https://www.tg-me.com/sg/Библиотека data scientist’а | Data Science Machine learning анализ данных машинное обучение/com.dsproglib/6244

Библиотека дата-сайентиста #междусобойчик



tg-me.com/dsproglib/6430
Create:
Last Update:

📈 Холивар: NumPy против pandas против PySpark — кто рулит в данных

Дата-сайентисты, делитесь: чем копаете свои миллионы строк?

🐍 NumPy — минимализм и математика
• Основа всех ML-библиотек.
• Векторы, матрицы, broadcasting — строго, быстро, эффективно.
• Если ты знаешь np.dot и np.linalg, тебя зовут в глубины ML.

Но:
• Строгая типизация и отсутствие удобных табличек.
• Хотел сделать фильтр по колонке? Сначала reshape.
IndexError: too many indices — старая знакомая.

📊 pandas — король табличек
df.head() — и ты уже видишь суть.
• Гибкость, группировки, фильтрации — словно Excel на стероидах.
• Подходит и для EDA, и для препроцессинга.

Но:
• Большой датасет? Привет, out of memory.
• Интуитивно, но не всегда предсказуемо.
SettingWithCopyWarning — и ты не уверен, изменил ли что-то вообще.

🔥 PySpark — big data и кластеры
• Когда данных слишком много для pandas.
• Распределённые вычисления, lazy evaluation, Spark SQL.
• Подходит для продакшена, когда ноутбук уже плачет.

Но:
• Стартуем JVM… подождите немного.
• Написал три строчки — получил лог на 300 строк.
• Не для быстрых экспериментов.

А вы кто: numpy-ниндзя, pandas-мастер или spark-инженер? Или по чуть-чуть от каждого?
Инструкция о том, как оставить комментарий: https://www.tg-me.com/sg/Библиотека data scientist’а | Data Science Machine learning анализ данных машинное обучение/com.dsproglib/6244

Библиотека дата-сайентиста #междусобойчик

BY Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение




Share with your friend now:
tg-me.com/dsproglib/6430

View MORE
Open in Telegram


Библиотека data scientist’а | Data Science Machine learning анализ данных машинное обучение Telegram | DID YOU KNOW?

Date: |

However, analysts are positive on the stock now. “We have seen a huge downside movement in the stock due to the central electricity regulatory commission’s (CERC) order that seems to be negative from 2014-15 onwards but we cannot take a linear negative view on the stock and further downside movement on the stock is unlikely. Currently stock is underpriced. Investors can bet on it for a longer horizon," said Vivek Gupta, director research at CapitalVia Global Research.

If riding a bucking bronco is your idea of fun, you’re going to love what the stock market has in store. Consider this past week’s ride a preview.The week’s action didn’t look like much, if you didn’t know better. The Dow Jones Industrial Average rose 213.12 points or 0.6%, while the S&P 500 advanced 0.5%, and the Nasdaq Composite ended little changed.

Библиотека data scientist’а | Data Science Machine learning анализ данных машинное обучение from sg


Telegram Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение
FROM USA